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Prediction model for forebay water level of
pumping stations with different time scales

based on BP neural networks

XUE Ping' ,ZHANG Zhao? , LEI Xiaohui?, .U Longbin', YAN Peiruv®, LI Yueqiang®

(1. School of Water Conservancy and Environment, University of Jinan,Jinan 250022, China; 2. Institute of Water
Resources, China Institute of Water Resources and Hydropower Research, Beijing 100038, Chinaj; 3. School of Civil
Engineering, Tianjin University, Tianjin 300072, China;4. College of Water Conservancy
and Hydropower Engineering, Hohai University, Nanjing 210098, China)

Abstract: Considering the difficulty in water level prediction under building control,a water level prediction model for the fore-
bay of a pumping station was built on the basis of back-propagation (BP) neural networks,and the influence of time series and
impact factors on the accuracy of water level prediction was analyzed under different time scales. The constructed model was ap-
plied to the Dongsong Pumping Station of the Jiaodong Water Transfer Project. The research results revealed that: when the to-
tal amount of data was fixed, and the ratio of the training period to the prediction period was 7 ¢ 3, the prediction result was
good;a larger amount of data was accompanied by a greater number of positively correlated impact factors required for certain
prediction accuracy;in a short period of time,when the prediction time interval was the same as the time interval of the data it-
self, the prediction effect was better. The constructed model can meet the demand for dynamic prediction of the water level in
the forebay of the open channel water transfer project and can achieve the 2 h accurate prediction of the forebay water level of
the pumping station and the 4 h general accurate prediction. Additionally, it can be popularized and applied in other similar open
channel water transfer projects.

Key words: forebay of pump station; water level prediction; BP neural network; time series; proportion

For the long-distance water dispatching of an
open channel water transfer project, hydraulic
structures such as pumping stations, control gates,
and inverted siphons are generally set up in the
channel to relieve the influence of terrain condi-
tions on water transfer restrictions. Meanwhile,
monitoring equipment such as water level meters
and flow meters are installed in front of buildings

to obtain water information and monitor water
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safety. Compared with real-time water level moni-
toring, high-precision water level prediction can
provide more scientific guidance for dispatchers in
the process of water dispatching,especially the wa-
ter level prediction in the forebay of pumping sta-
tions, which is of great significance to the regula-
tion of pumping stations, water dispatching, and
channel safety. Affected by various factors such as

climate, temperature, and human activities, the
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hydrological sequence collected by monitoring
equipment often presents the characteristics of
nonlinearity and uncertainty, and it is difficult to
analyze the laws and predict the trend by conven-
tional methods. Scholars"'?' have built hydraulic
models to simulate the changing process of channel
water flow, but the modeling requires complete and
accurate topographic data, engineering parameters,
and measured data; moreover, the calibration
process of the roughness rate is also repetitive and
cumbersome', and thus there are huge limita-
tions. With the continuous progress of artificial
intelligence technology and machine learning meth-
ods, the data-driven methods used for the predic-
tion can avoid many requirements and limitations
of hydraulic modeling and directly explore the
inherent laws between data™™.

Up to now, most scholars!® have built neural
network models for water level prediction, such as
the optimized RBF neural network, LSTM neural
network model,and wavelet neural network applied
in groundwater level prediction, with high predic-
tion accuracy and an excellent prediction effect. Al-
though the relevance vector machine (RVM) pre-
diction model"®’, Mike model"'", similarity mod-

el12] 117, and Bayesian model*"

, statistical mode
can be constructed for water level prediction, their
applications are limited to a certain extant, and
hence they are not widely used in water level pre-
diction for water transfer projects. As the neural
network has been commonly used in water level
prediction, and its development has gradually ma-

[526] have made water level

tured, many scholars
predictions by combining neural network models
and algorithms or improving algorithms. For in-
stance, Wu et al. "' combined KNN,GA ,and BP to
predict the flood level of the Qinhuai River, and
compared with the neural network model without
combination, the combined method has higher pre-
diction accuracy but is slightly more complicated.
In other words, the uncombined neural network
models are simple and practical. For example, Gao
et al. “used the BP neural network to predict the
water level in front of the pumping station and

found that the BP neural network has great advan-
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tages in solving nonlinear problems and has signifi-
cant potential in intelligent prediction. In addition,
the commonly used evaluation indicators include
the root mean square error (Erys) and determina-
tion coefficient (R?)™,

In summary.it is a feasible research method to
construct a neural network for water level predic-
tion. Moreover, intelligent algorithms such as arti-
ficial neural networks have certain applicability
conditions in hydrological prediction applications.
For example, ANN has a strong nonlinear ability,
but due to its simple structure, previous informa-
tion can not be saved,and time series data can not
be learned. RNN can retain the water level predic-
tion at the previous moment and can effectively
process sequence data, but there are defects in gra-
dient transfer. LSTM has long and short-term
memory functions and can solve gradient disap-
pearance and gradient explosion to a certain ex-
tent, but there are still problems in long se-
quences, and it can not be parallelized. Restricted
by the one-way flow of information, the classical
BP neural network considers a limited amount of
historical information and is only suitable for
short-term prediction, but it has a stable structure
and features versatility and simplicity, which can
flexibly deal with nonlinear problems, achieve high
prediction accuracy,and has strong nonlinear map-
ping ability. As the hydrological sequence in hydro-
logical forecasting is greatly affected by human fac-
tors and presents a prominent nonlinear character-
istic, and the BP neural network is suitable for
hydrological forecasting. Since BP neural network
was proposed by Rumelhart et al. ©/in 1986, it has
been widely used in research on hydrological pre-
diction. In this paper,a BP neural network was es-
tablished. We used historical data to predict the
water level in the forebay of the pumping station
and analyzed the influence of the time series pro-
portion and impact factors on the water level pre-
diction, The research results can provide a new
method for water level prediction and reference da-
ta for the changing trend of the water level in the

forebay of the pumping station.
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1 Research method

The water level in the forebay of the pumping
station is selected as the research object. The im-
pact factors are determined by correlation analysis
and are used as the input to construct the BP neu-
ral network model, and then the prediction results
are judged by the parameters of each indicator.
1.1 Impact factor identification

Under the influence of various hydraulic fac-
tors (section area, hydraulic gradient, roughness,
etc. ), there is a corresponding relationship be-
tween the section flow and the water level in the
channel. As one of the monitoring sections, the wa-
ter level in the forebay of the pumping station may
have a hydraulic connection with the water level of
the adjacent section, the flow of the pumping sta-
tion, the upstream flow, and the flow difference.
Taking these relevant water levels and flow as var-
iables, we conduct a correlation analysis of each
variable and the predictor, and the impact factors
with a certain degree of correlation are identified.

The impact factor identification methods
adopted include Pearson’s correlation coefficient,
Kendall's correlation coefficient, Spearman’s rank
correlation coefficient, and grey relational analysis
(GRA). Pearson's correlation coefficient is used to
measure the degree of correlation between two var-
iables, and Pearson’ s correlation coefficient be-
tween two variables is defined as the quotient of
the covariance and standard deviation between the
two variables. Kendall's correlation coefficient is a
method to represent the degree of correlation of
multi-column rank variables. If n similar statistical
objects are sorted by a specific attribute, other at-
tributes are usually out of order, and the ratio of
the difference between same-order pairs and out-of-
order pairs to the total number of pairs[ n(n—1)/
2]is defined as Kendall's coefficient. Spearman’ s
rank correlation coefficient is a method to study the
correlation between two variables according to the
rank data;in other words,it is calculated according
to the rank difference between each pair of two-col-
umn paired ranks, and the monotone equation is

used to evaluate the correlation of the two statisti-

cal variables. The range of the correlation indicator
or correlation coefficient of the above three meth-
ods is from —1 to 1: When the absolute value of
the correlation coefficient is closer to 1, the correla-
tion is higher; when it is equal to zero, there is no
correlation. GRA is a quantitative method for ana-
lyzing the correlation degree of each factor in the
system, which measures the degree of correlation
between factors according to the degree of similari-
ty or dissimilarity in development trends among
different variable sequences. When GRA is less
than 0. 6, it is considered that there is no correla-
tion,and when it is closer to 1, the correlation de-
gree is higher.
1.2 BP neural networks

A BP neural network is a multilayer feedfor-
ward neural network trained by an error back-
propagation algorithm, generally including the in-
put layer,hidden layer,and output layer. The input
layer has the function of information access,i. e. ,
signal reception. When the signal reception is com-
pleted, the information is transmitted to the hidden
layer,and the number of neurons in the input layer
is the number n of input impact factors. The hidden
layer is responsible for information processing and
information transformation, and the number of
neurons in the hidden layer is m,which is less than
N—1 (N is the number of training samples),
whose value is tested in MATLAB. Then, the in-
formation is transmitted from the hidden layer to
the output layer, and the output layer outputs the
results. The typical structure of a three-layer net-

work is shown in Fig. 1.

Fig. 1 BP neural network model structure
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The neural network structure parameters are
set as follows: maximum training times= 100; required
accuracy of training=1>X10"%;learning rate=0. 01.
Upon the parameter setting, the network automati-
cally adjusts the weights and thresholds by the
back-propagation of errors, which drives the
expression function in the BP neural network to
obtain the optimal solution, and finally, it outputs
the prediction results and the indicator values of
the evaluation results.

1.3 Evaluation criteria of prediction results

R?,Egrus s and the mean absolute error (Eyy)
are used as the evaluation criteria to judge the
strengths and weaknesses of the prediction results.
When R? is closer to 1.and Egrys and Ey, are closer

to zero, the prediction accuracy is higher.
2 Overview of study area

The Jiaodong Water Transfer Project is an im-
portant part of the water conservancy construction
in Shandong Province, including two water trans-
mission lines: the Yellow River Transfer Project

and the Water Transfer Project from the Yellow

River to Qingdao. The latter started on April 15,
1986, and it was officially put into operation on No-
vember 25,1989;the Yellow River Water Transfer
Project started on December 19, 2003, and the
whole line was completed in July 2013, with the
main project put into operation in December. The
Yellow River Transfer Project includes two parts;
the open channel section and the pipeline section.
The open channel section starts from the Song-
zhuang Transfer Gate and terminates at the Huan-
gshuihe Pumping Station, passing through three
pumping stations in Huibu, Dongsong, and
Xinzhuang, several inverted siphons,aqueducts,and
other water transfer structures, with a total length
of about 160 km. The study area selected in this
paper is the open channel section of the Yellow
River Water Transfer Project. Specifically, the
study area is around the Dongsong Pumping Sta-
tion, with the upstream control node as the Huibu
Pumping Station and the downstream control node
as the control gate on the port. The building distri-
bution of this section and buildings along the line

are shown in Fig. 2.

Fig. 2 Canal section and building along the distribution

3 Results and discussion

3.1 Identification results of impact factors
The relationship between the water level and
flow rate and the influence of human factors were
considered when studying the water level in the
forebay of the Dongsong Pumping Station in the

future. In addition to the water level of the adjacent
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section, the flow of the Dongsong Pumping Sta-
tion, the flow of the Huibu Pumping Station, and
the flow difference between the two pumping sta-
tions were also selected as the impact factors for
prediction. The impact factors are all the impact
factors at the current time. Tab. 1 shows the corre-
lation analysis results between each factor and the

water level of the forebay under different methods.
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Tab. 1 Correlation analysis of impact factors
Upstream Downstream Water level ~ Water level Flow diff U
ow difference stream
water level of  water level of in front of behind the Flow of P
. L . . . between the flow of
Correlation indicators the Haizheng  the Haizheng Dongsong Dongsong pumping . .
o o 4 . 4 two pumping  pumping
River inverted River inverted Pumping Pumping station . .
. . . . stations station
siphon siphon Station Station
Pearson’s correlation coefficient 0. 846 0. 876 0.911 —0. 045 0. 224 0.911 —0.034
Kendall's correlation coefficient 0. 648 0. 642 0. 747 —0. 067 0. 233 0. 747 —0. 067
Spearman’s rank correlation _
L. 0. 829 0. 825 0. 901 —0. 067 0. 322 0. 901 —0. 067
coefficient
GRA 0.792 0. 920 0.934 0. 764 0. 807 0. 893 0.731

It can be seen from Tab. 1 that the order of
the correlation of impact factors from high to low
is the water level in front of the Dongsong Pum-
ping Station, the flow difference of the two pum-
ping stations, downstream water level of the
Haizheng River inverted siphon, upstream water
level of the Haizheng River inverted siphon, the
flow of the pumping station, flow of the Dongsong
Pumping Station, and upstream flow of the pum-
ping station. The coefficients of the first four im-
pact factors are all between 0. 8 and 0. 9, which
are identified as impact factors with a high correla-
tion and are given priority when modeling. Con-
sidering the indicators of the last three impact fac-
tors, only GRA indicates that the degree of corre-
lation is high, and thus they are identified as im-
pact factors with a low correlation, which can be
considered in modeling but are not importantly
considered.

3.2 Analysis of water level prediction results

The BP neural network model was used to
predict the water level in the forebay of pumping
stations, and the prediction results were analyzed
from the aspects of time series and impact factors.
3.2.1 Time series

The data of different time scales were trained
and verified according to a certain proportion, and
the training duration and prediction accuracy were
compared. The results indicate that the optimal ra-
tio of the training period to the prediction period is
7 ¢ 3. Reducing the ratio will lessen the prediction
accuracy , while increasing the ratio almost does not
change the prediction accuracy, and the required

data volume is significantly raised.

We used 3 600 data to predict the water level
change in the next two hours, and R?, Erus» and
Eua at the ratio of 7 @ 3 were maintained at about
0.95,0. 04, and 0. 03, respectively. When the ratio
was increased, the prediction effect of each indicator
was slightly improved, but the difference was not
1, the

prediction accuracy basically would not see a rise.

large; when the ratio was higher than 5

The specific comparison is shown in Fig. 3 and
Fig. 4.

Fig. 3 The result of water level forecast in the next 2 h (7 & 3)

Fig. 4 The result of water level forecast in the next 2 h (5 : 1)

Three groups of threeemonth data were
trained and validated at a ratio of 7 : 3. R* was
maintained at 0. 93-0. 98, Erys at 0.02-0. 05, and
Ewa at 0. 02-0. 04. The prediction results are shown

in Fig. 5.
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Fig. 5 The result of water forecast change in the next 2 h (7 : 3)

The data of one month was verified at a ratio
of 7 ¢ 3,and the verification results indicated that
the ratio could still be applied to the amount of da-

ta of one month,as shown in Fig. 6.

Fig. 6 The result of water level forecast in the next 2 h (7 : 3)

It can be seen from the above that the optimal
ratio is suitable for data of different time scales,
and the determination of the optimal ratio can not
only save the learning time of the neural network
but also improve the prediction accuracy, which has
a great influence on the model.

3.2.2 Impact factors

The number of impact factors. When there is a
high correlation between impact factors and predic-
tors, a higher number of impact factors leads to
more accurate prediction results, However, the
increase in the number of impact factors can elevate
the data demand during the training period. There-
fore, to reduce the data demand and ensure predic-
tion accuracy, we employed different numbers of
impact factors for training and verification. The
verification results revealed that at least three to
five impact factors should be selected for training
in the short term (one to three months), and at
least five to seven impact factors with the greatest

correlation were required for the data volume of
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three months to a year.

Types of impact factors. Studies have shown
that higher prediction accuracy can be achieved
when the most relevant impact factors are selected
for modeling. According to the correlation analysis
results of the impact factors, the three impact fac-
tors with the highest correlation are the water level
of the pumping station at the current moment, the
water level of the upstream adjacent nodes,and the
flow difference. Three impact factors were applied
to train and predict data of one month, and the
above three impact factors registered the best pre-

diction effect,as shown in Fig. 7.

Fig. 7 3-factor water level prediction result map (7 3 3)

The time interval of the impact factors. When
the data interval was 2 h, the water level of the
Dongsong Pumping Station in the future was pre-
dicted: The water level prediction results in the
next two hours were relatively stable, with R?
greater than 0. 9 and small Egys and Ey, 5 the pre-
diction results of water levels in the next four
hours were general, with R? of 0. 8-0. 9 and Egrus
and Ewya slightly larger than those predicted in two
hours; the prediction results of the water level in
the next six hours were poor: R? was unstable and
had a large variation range, and it was only about
0. 7 when the results were good, while Erys and
Eua were overly great. In other words, when the
data does not change during the training period, a
longer prediction time is accompanied by lower
prediction accuracy. The three-month data were
screened to change the interval from 2 h to 4 h,
and the water level of the Dongsong Pumping Sta-
tion in the next 4 h was predicted. The prediction

results are shown in Fig. 8.
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Fig. 8 The result of water level change in the next 4 h (7 : 3)

The ten-month data were screened at an inter-
val of 4 h,and the water level in the next 4 h was

predicted. The prediction results are shown in Fig. 9.

Fig. 9 The result of water level change in the next 4 h (7 : 3)

The research results demonstrate that com-
pared with the direct prediction using the data at
an interval of 2 h, the prediction using the data at
an interval of 4 h registers higher accuracy in pre-
dicting the water level of the pumping station in
the next 4 h,with R?, Erus»and Eua in the range of
0. 82-0. 93,0. 05-0. 06,and 0. 04-0. 05, respectively.

The one-year data were screened to convert
the interval from 2 h to 6 h,and the water level of
the Dongsong Pumping Station in the next 6 h was
predicted. The prediction results show that the pre-
diction effect after screening is worse than that of
the direct prediction using data at an interval of
2 h. Upon analysis, the above phenomenon is
caused by the overly long interval of 6 h, which can
not fully reflect the changing laws of each factor.
Therefore, the prediction result after screening is
worse than that using the data at an interval of 2 h

directly.
4 Conclusion

The influence of the time series ratio on the

water level prediction results; The optimal ratio of

the training period to the prediction period is 7 ¢ 3,
and the increase in the ratio cannot significantly
change the prediction accuracy, while the decrease
in the ratio can lead to a worse prediction effect.

The effect of impact factors on the prediction
results; The amount of data corresponds to the
number of impact factors. The data volume of three
months requires three to five impact factors for
training,and the data volume of three months to a
year requires five to seven impact factors to ensure
the same prediction effect.

The influence of the data interval on the pre-
diction results: In general, when the data interval
remains unchanged, the prediction accuracy gradu-
ally decreases with the increase in the prediction
time, but when the data can reflect the changing
laws of each factor, the data interval and the pre-
diction time are the same,and the prediction effect

is better.
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